Navigation auf uzh.ch

Suche

UZH News

Tropenfrösche ermöglichen neue Erkenntnisse zu Nierenkrankheit

Mithilfe modernster Gentechnik haben UZH-Forschende in tropischen Fröschen ein Modell zur Untersuchung einer erblichen Nierenkrankheit entwickelt. Dies ermöglicht ihnen, grosse Datenmengen zu den entsprechenden Anomalien zu sammeln und diese mit Künstlicher Intelligenz zu analysieren. Das Vorgehen eröffnet effiziente Möglichkeiten für die Suche nach Therapeutika gegen die bisher unheilbare Krankheit.

Kategorien

Frosch
Der Tropenfrosch "Xenopus tropicalis" eignet sich für die Modellierung menschlicher Erbkrankheiten. (Bild: Soeren Lienkamp)

Die Anatomie und die Funktion der Organe von Fröschen sind denjenigen von Menschen verblüffend ähnlich. Ein internationales Team unter der Leitung von Soeren Lienkamp, Professor am Anatomischen Institut der UZH, hat sich dies zunutze gemacht und den Tropenfrosch Xenopus tropicalis für die Modellierung menschlicher Erbkrankheiten eingesetzt. Dabei haben sich die Forschenden auf die polyzystische Nierenerkrankung konzentriert – eine angeborene und derzeit unheilbare Form des fortschreitenden Nierenverfalls – und diese in Fröschen nachgebildet.

Krankheitsprozesse in Echtzeit beobachten

Mithilfe der CRISPR/Cas9-Methode haben die Wissenschaftler gezielt Gene ausgeschaltet, die bei Patientinnen und Patienten mit zystischer Nierenerkrankung eine Rolle spielen. «Unsere neuartigen Froschmodelle entwickeln innerhalb weniger Tage Zysten in den Nieren, so dass wir zum ersten Mal beobachten können, wie diese Krankheitsprozesse in Echtzeit ablaufen», sagt der Erstautor Thomas Naert. Während die meisten genetischen Studien an Mäusen durchgeführt werden, haben Frösche Eigenschaften, die sich für Untersuchungen in grösserem Massstab eignen. «Ein Froschpaar kann Hunderte oder sogar Tausende von Eiern produzieren», so Naert. «Deshalb schwärmen die Kaulquappen im Frühling in den Seen in so grosser Zahl aus.» In vergleichbarer Weise lassen sich im Labor grosse Mengen von Xenopus-tropicalis-Kaulquappen so verändern, dass sie die zu untersuchenden zystischen Nierenkrankheiten entwickeln.

Künstliche Intelligenz analysiert Daten aus Lichtblattmikroskopie

Um die Analyse dieser grossen Anzahl Tiere zu bewältigen, nutzte das Team Lichtblattmikroskopie – eine Technik, die eine 3D-Rekonstruktion der gesamten Kaulquappe und aller ihrer Organe ermöglicht. Ähnlich wie bei der Magnetresonanztomographie lässt sich das Gewebe der Kaulquappen mit der Lichtblatttechnik virtuell durchleuchten, um zu den erkrankten Organen vorzudringen. Die gesammelten Daten verarbeiteten die Forschenden mithilfe von künstlicher Intelligenz, was eine schnelle, automatisierte Beurteilung der Krankheit erlaubt. «Während mein Team sonst Tage bis Wochen brauchte, um die Daten von Hunderten von Kaulquappen zu analysieren, kann künstliche Intelligenz diese Aufgabe jetzt in wenigen Stunden leisten», sagt Lienkamp.

Anhand der so analysierten Froschmodelle lassen sich neue Erkenntnisse über die frühen Prozesse der polyzystischen Nierenerkrankung gewinnen. Das ist die Grundlage für die Entwicklung neuer Versorgungsansätze für die betroffene Patientinnen und Patienten.

Literatur:

Thomas Naert et al. Deep learning is widely applicable to phenotyping embryonic development and disease, Development, 5. November 2021. DOI: 10.1242/dev.199664

Finanzierung:

Die Studie wurde durch den Schweizer Nationalfonds (SNF), den NCCR Kidney.ch sowie durch ERC Horizon2020 (Starting Grant und Marie Skłodowska-Curie-Programm) finanziert.

Weiterführende Informationen

Kontakt

Prof. Dr. Soeren Lienkamp
Universität Zürich
Anatomisches Institut
Tel. +41 (0) 44 635 53 48

E-Mail

Download Bilder

  • Tropischer Frosch

    (JPEG, 6.94 MB)

    Tropenfrosch "Xenopus tropicalis" (Bild: Soeren Lienkamp)

  • Tropischer Frosch

    (JPG, 361 KB)

    Tropenfrosch "Xenopus tropicalis" (Bild: Soeren Lienkamp)

  • Mikroskopie-Bild einer Kaulquappe

    (JPG, 68 KB)

    Mikroskopie-Bild einer Kaulquappe (Bild: Thomas Naert)

  • Mikroskopie-Bild einer Kaulquappe

    (JPG, 83 KB)

    Mikroskopie-Bild einer Kaulquappe (Bild: Thomas Naert)