Navigation auf uzh.ch
Neurale Stammzellen sind nicht nur für die frühe Gehirnentwicklung verantwortlich – sie bleiben ein Leben lang aktiv. Sie teilen sich und bilden laufend neue Nervenzellen und ermöglichen es dem Gehirn, sich kontinuierlich an neue Anforderungen anzupassen. Verschiedene genetische Veränderungen beeinträchtigen die Aktivität neuraler Stammzellen und führen so bei betroffenen Menschen zu einer eingeschränkten Lern- und Gedächtnisleistung. Welche Mechanismen dafür verantwortlich sind, war bislang nur wenig bekannt.
Ein internationales Forschungsteam unter der Leitung von Sebastian Jessberger, Professor am Institut für Hirnforschung der Universität Zürich (UZH), zeigt nun erstmals in einer in Cell Stem Cell publizierten Studie, dass ein Enzym des Fettstoffwechsels die lebenslange Aktivität von Stammzellen im Gehirn reguliert. Dieses Enzym – die sogenannte Fettsäuresynthase (FASN) – ist für die Bildung von Fettsäuren zuständig. Eine spezifische Mutation in der Erbinformation des Enzyms schränkt bei betroffenen Patientinnen und Patienten die kognitive Leistungsfähigkeit ein.
Angeführt von Postdoc Megan Bowers und den Doktoranden Tong Liang und Daniel Gonzalez-Bohorquez untersuchten die Forschenden die genetische Veränderung von FASN sowohl im Mausmodell als auch in humanen Hirnorganoiden – organähnliche Zellkulturen des Gehirns, die von menschlichen embryonalen Stammzellen gebildet werden. «Dieser Ansatz ermöglicht es, parallel die Auswirkungen des fehlerhaften Enzyms im Hirn erwachsener Mäuse und während der frühen menschlichen Gehirnentwicklung zu analysieren», erklärt Jessberger. Dazu wurde das Erbgut der Mäuse sowie der menschlichen Organoide experimentell so verändert, dass das Enzym des Fettstoffwechsels exakt jene Mutation aufweist, die bei den Menschen mit kognitiven Defiziten gefunden wurde.
Sowohl in der Maus als auch im menschlichen Gewebe führte die FASN-Mutation zur verminderten Teilung von Stammzellen, die laufend neue Nervenzellen bilden. Verantwortlich dafür ist die Überaktivität des mutierten Enzyms: Dadurch sammeln sich Fette im Zellinnern an, was die Stammzellen unter Stress setzt und ihre Teilungsfähigkeit reduziert. Ähnlich wie die kognitiven Einbussen betroffener Menschen zeigten auch die Mäuse aufgrund der Mutation Lern- und Gedächtniseinschränkungen. «Unsere Ergebnisse liefern den Beweis für den funktionellen Zusammenhang von Fettstoffwechsel, Stammzellaktivität und kognitiver Leistungsfähigkeit», fasst Jessberger zusammen.
Der nun identifizierte Mechanismus zeigt, wie der Fettstoffwechsel die Aktivität neuronaler Stammzellen reguliert und damit die Gehirnentwicklung beeinflusst. «Nur die Verknüpfung von Forschung im Tiermodell und an menschlichen Zellen hat die neuen Erkenntnisse über Lern- und Gedächtniseinschränkungen beim Menschen ermöglicht», betont Jessberger. Gemäss den Wissenschaftlern stellt ihre Methodik eine «Blaupause» dar, um die Aktivität von Hirnstammzellen und ihre Rolle bei kognitiven Prozessen im Detail zu erforschen und damit nur schlecht verstandene Erkrankungen besser zu verstehen.
«Wir hoffen zudem, die Stammzellaktivität zukünftig therapeutisch steuern zu können, um sie auch zur Reparatur des Gehirns zu nutzen – etwa zur Behandlung von kognitiven Erkrankungen oder bei Krankheiten, bei denen Nervenzellen absterben, wie dem Morbus Parkinson oder Alzheimer», sagt Sebastian Jessberger.
Megan Bowers, Tong Liang, Daniel Gonzalez-Bohorquez, Sara Zocher, Baptiste N. Jaeger, Werner J. Kovacs, Clemens Röhrl, Kaitlyn M. L. Cramb, Jochen Winterer, Merit Kruse, Slavica Dimitrieva, Rupert W. Overall, Thomas Wegleiter, Hossein Najmabadi, Clay F. Semenkovich, Gerd Kempermann, Csaba Földy, Sebastian Jessberger. FASN-dependent lipid metabolism links neurogenic stem/progenitor cell activity to learning and memory deficits. Cell Stem Cell. 7 May 2020. DOI: 10.1016/j.stem.2020.04.002