Navigation auf uzh.ch

Suche

UZH News

Jupiter hatte Wachstumsstörungen

Forschende der Universitäten Zürich und Bern sowie der ETH Zürich zeigen, wie der Jupiter entstanden ist. Daten aus Meteoriten hatten darauf hingedeutet, dass sich das Wachstum des Riesenplaneten während zwei Millionen Jahre verzögerte. Nun liegt die Erklärung vor: Kollisionen mit kilometergrossen Blöcken erzeugten hohe Energie, was dazu führte, dass kaum Anreicherung von Gas stattfinden. Somit konnte der Planet nur langsam wachsen.

Kategorien

Jupiters südliche Hemisphäre fotografiert von der NASA-Sonde Juno.
Jupiters südliche Hemisphäre fotografiert von der NASA-Sonde Juno. (Bild: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/ Seán Doran)

Der Jupiter ist mit einem Äquatordurchmesser von rund 143.000 Kilometern der grösste Planet des Sonnensystems und hat 300 Mal so viel Masse wie die Erde. Der Entstehungsmechanismus von Riesenplaneten wie Jupiter ist seit Jahrzehnten ein heiss diskutiertes Forschungsthema. Nun haben sich Astrophysikerinnen und Astrophysiker des Nationalen Forschungsschwerpunktes (NFS) PlanetS der Universitäten Zürich und Bern sowie der ETH Zürich zusammengetan, um alte Rätsel rund um die Entstehung des Jupiters und neue Messungen zu erklären. Die Forschungsergebnisse wurden in der Zeitschrift «Nature Astronomy» publiziert.

Verschiedene Phasen des Wachstums

«Wir konnten zeigen, dass der Jupiter in verschiedenen Phasen gewachsen ist», erklärt Julia Venturini, Postdoktorandin an der Universität Zürich. «Besonders interessant ist, dass es nicht die gleichen Körper sind, welche die Masse und die Energie liefern», ergänzt Yann Alibert, Science Officer beim NFS PlanetS und Erstautor der Studie. Zuerst sammelte der Planeten-Embryo nämlich schnell kleine, zentimetergrosse Kieselsteine an und formte so in der ersten Million Jahren rasch einen Kern. Die folgenden zwei Millionen Jahre waren geprägt von einer langsameren Anhäufung von kilometergrossen Blöcken, den so genannten Planetesimalen. Sie trafen den wachsenden Planeten mit grosser Wucht und setzen Wärme frei. «Während der ersten Etappe brachten die Kieselsteine die Masse», erklärt Yann Alibert: «In der zweiten Phase fügten die Planetesimale auch etwas Masse hinzu, aber was noch wichtiger ist, sie brachten Energie.» Nach drei Millionen Jahren war Jupiter zu einem Körper von 50 Erdmassen herangewachsen. Dann begann die dritte Entwicklungsphase, dominiert von der Anreicherung von Gasen, die zum heutigen Gasriesen mit rund 300 Erdmassen führte.

Sonnensystem in zwei Teile geteilt

Das neue Modell für Jupiters Geburt passt zu den Meteoritendaten, die letztes Jahr auf einer Konferenz in den USA vorgestellt wurden. Zunächst waren Julia Venturini und Yann Alibert verwirrt, als sie die Ergebnisse hörten. Messungen der Zusammensetzung von Meteoriten zeigten, dass in der Urzeit das Sonnensystems – eine Scheibe aus Staub und Gas – während zwei Millionen Jahren in zwei Regionen aufgeteilt war. Daraus liess sich der Schluss ziehen, dass der Jupiter eine Art Barriere darstellte, als er von 20 auf 50 Erdmassen anwuchs. Während dieser Zeit muss der Planet die Staubscheibe gestört haben, und er muss eine Überdichte erzeugt haben, welche dazu führte, dass die Kieselsteine ausserhalb seiner Umlaufbahn gefangen waren. Daher konnte sich das Material aus den äusseren Regionen nicht mit dem Material der inneren vermischen, bis der Planet genügend Masse erreicht hatte, um Gestein umzulenken und nach innen zu streuen.

Interdisziplinäre Vernetzung wichtig

«Wie konnte es zwei Millionen Jahre dauern, bis Jupiter von 20 auf 50 Erdmassen angewachsen war?» fragte Julia Venturini. «Das schien viel zu lang», erklärt sie: «Das war also die Frage, die unsere Studie auslöste.» Eine Diskussion per E-Mail begann unter den Forschenden des NFS PlanetS der Universitäten Zürich und Bern sowie der ETH Zürich und in der darauffolgenden Woche organisierten die Expertinnen und Experten aus den Bereichen Astrophysik, Kosmochemie und Hydrodynamik ein Treffen in Bern. «Nach ein paar Stunden wussten wir, was wir für unsere Studie berechnen mussten», sagt Yann Alibert: «Das war nur im Rahmen des Nationalen Forschungsschwerpunkts möglich, der Wissenschaftler und Wissenschaftlerinnen aus verschiedenen Gebieten vernetzt.»

Erklärung für verzögertes Wachstum

Mit ihren Berechnungen zeigten die Forschenden, dass die Zeit, die der junge Planet im Massenbereich von 15 bis 50 Erdmassen verbrachte, in der Tat viel länger war als bisher angenommen. Während dieser Entstehungsphase lieferten die Kollisionen mit den kilometergrossen Blöcken genügend Energie, um die Gasatmosphäre des jungen Jupiters aufzuheizen und eine schnelle Abkühlung, Kontraktion und weitere Gasanreicherung zu verhindern. «Kieselsteine sind in den ersten Phasen wichtig, um schnell einen Kern zu bilden. Aber die Wärme, die von den Planetesimalen geliefert wird, ist entscheidend, um die Gasanreicherung so zu verzögern, dass sie zur Zeitskala passt, die durch die Meteoritendaten vorgegeben wird», fassen die Astrophysikerinnen und Astrophysiker zusammen. Sie sind überzeugt, dass ihre Ergebnisse auch entscheidend dazu beitragen werden, langwierige Probleme bei der Erklärung der Entstehung von Uranus und Neptun sowie Exoplaneten mit ähnlicher Masse zu lösen.

Literatur:

Yann Alibert, Julia Venturini et al.: “The formation of Jupiter by hybrid pebble-planetesimal accretion”, Nature Astronomy, 27 August 2018. DOI: 10.1038/s41550-018-0557-2

Weiterführende Informationen

Kontakt

Dr. Julia Venturini

Universität Zürich
NFS PlanetS
Tel.: +41 44 635 58 03

E-Mail

 

PD Dr. Yann Alibert


Universität Bern
NFS PlanetS
Tel.: +41 31 631 44 27

E-Mail