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Four-dimensional (4D) flow magnetic resonance imaging 
(MRI) provides spatiotemporally resolved quantification of 
blood flow and offers great potential for the assessment of car-

diovascular disease, for example aortic valve stenosis, atherosclero-
sis or vessel wall remodelling1. However, clinical adaptation of the 
method has been hampered by the long examination times.

Many efforts have been dedicated to accelerate flow acquisition 
by exploiting redundancies in the data. Partial Fourier imaging2 has 
been used for moderate acceleration3, but the underlying assump-
tion of a slowly varying phase has been shown to be incorrect for 
4D flow MRI4. Parallel imaging (PI)5, which exploits the spatially 
varying sensitivity of receiver elements in the coil array, has become 
a standard for accelerated imaging, but undersampling rates are 
limited by noise amplification6. The advent of compressed sensing 
(CS)7 has enabled acceleration of 4D flow MRI by acquiring only a 
subset of k-space data and exploiting prior information about data 
regularities during reconstruction8–13, with typical acceleration fac-
tors ranging from 5 (ref. 10) to 27 (ref. 13). In particular, locally low 
rank (LLR) regularized reconstruction14 has been successful, itera-
tively balancing the data fidelity cost and the singular norm of a 
patch matrix stacked over cardiac phases (see Methods for details). 
However, iterative reconstruction methods, as used in CS, increase 
the reconstruction times considerably, implying that evaluation 
of 4D flow MRI data will typically happen when the subject has 
already been moved out of the scanner.

In recent years, deep neural networks have gained increasing 
popularity in MR image reconstruction. In the training stage, the 
neural network learns abstract features from a set of scans. After 
training, newly acquired data are reconstructed with very little 
computational effort by inference with the learned weights. This 
reduction in reconstruction times can facilitate the use of acceler-
ated imaging methods in clinical practice. Moreover, reconstruc-
tion results can be superior to traditional CS methods15,16. Some 
approaches discard concepts of iterative image reconstruction alto-
gether, for example, by learning end-to-end mappings from k-space 
to image space17. As a downside, such networks usually require abun-
dant amounts of high-quality training data, which are not available 

for high-dimensional flow MRI. Model-based neural reconstruc-
tion networks can also be designed to replicate the behaviour of 
an iterative reconstruction by interlacing nonlinear convolutional 
filters with an operation that enforces closeness of the current image 
estimate to the acquired data15,16,18,19, similar to the data fidelity step 
in an iterative shrinkage-thresholding algorithm20. A recent study21 
showed that neural network architectures that incorporate such an 
operation generalize better to different undersampling rates. In con-
trast, generic architectures that are solely based on convolutional 
layers can even lead to deteriorated image quality when the under-
sampling factor is increased, although one would expect the recon-
struction result to improve when more information is available. The 
adversarial approach for training MR reconstruction networks22,23 
is usually aimed at improving perceptual reconstruction quality, 
such as image sharpness. Typically, this is achieved at the expense 
of reconstruction normalized root-mean-square error (nRMSE)24, 
which is critical for flow quantification.

In this work, an approach based on the idea of deep variational 
neural networks15 is implemented for rapid 4D flow reconstruction, 
which is referred to as FlowVN hereafter. For comparison, the 3D 
variational network (VN) architecture as presented in ref. 15 was 
adapted for 4D flow data by using 3D filter banks operating on sub-
sets of xyzt-dimensional data, yielding the model that we refer to as 
HamVN. The FlowVN network architecture replicates 10 steps of 
an iterative image reconstruction, while allowing for learnable spa-
tiotemporal filter kernels, activation functions and regularization 
weights in each iteration. It is demonstrated that, based on training 
performed with retrospectively undersampled data of healthy sub-
jects, FlowVN can accurately reconstruct pathological flow in a ste-
notic aorta in 21 s. Moreover, an imaging study with healthy subjects 
demonstrates good agreement of reconstructions from prospective 
undersampling with parallel imaging reference measurements.

4D flow MRI reconstruction with FlowVN
The FlowVN architecture improves HamVN in the following ways: (1) 
linear activations are used instead of radial basis functions, (2) the net-
work is conditioned on the sampling rate, (3) exponential weighting 
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Fig. 1 | Breathing-resolved 4D flow data acquisition. a, Data are sampled using a Cartesian pseudo-radial tiny golden angle sampling pattern. b, Time-
resolved data are inverse Fourier transformed (IFT) in the readout dimension, binned to end expiration using a combination of principal component 
analysis, low-pass filtering and coil clustering. c, Acquired data are sorted according to heart phase and velocity encoding. d, The datasets used during 
training and evaluation. To conduct prospective evaluation, seven healthy volunteers underwent accelerated compressed sensing (CS) and reference 
parallel imaging (PI) acquisitions during the same scan session.
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Fig. 2 | FlowVN architecture and training. a, Structure of FlowVN and its training strategy which uses reduced field-of-view data. b, Single unrolled 
iteration block consisting of convolutional filtering, data fidelity, undersampling (US) modulation and gradient descent momentum terms. Tunable 
parameters are highlighted in red. c, FlowVN at inference time yields 4D image reconstruction. d, Target training image error and velocity magnitude error 
in the aorta evaluated using training data. e, Data and gradient term weighting functions shown for each of 10 layers. f, Exemplary slices of 3D xyz filters 
and their corresponding activation functions at layer 5.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ArticlesNature Machine Intelligence

of intermediate layers is used as regularization, (4) real and imaginary 
parts of the signal are filtered by shared weights, (5) momentum is 
considered during gradient descent (GD) unrolling and (6) the data 
term allows tunable activation functions. The network is trained for a 
wide range of acceleration factors by allowing acceleration-dependent 
weighting of data consistency and filtering steps.

As illustrated in Fig. 1a, for each velocity encoding direction, the 
k-space data are acquired using a Cartesian golden angle sampling 
strategy, yielding variable density undersampling patterns in k-space. 
The signal of a total of 28 physical coils is compressed into 5 virtual 
coils via clustering25. The samples are then sorted into respiratory bins 
and data in the end-expiratory bin are used for reconstruction.

A deep variational network can be seen as a differentiable sequence 
of an unrolled numerical optimization scheme. To enable learning, 
such a sequence is then relaxed by allowing tunable filter weights and 
activation functions. As described in the Methods, we unroll K = 10 
steps of a gradient descent with momentum governed by a scalar α(k):

Sðkþ1Þ  αðkþ1ÞSðkÞ þ GðkÞ ð1Þ

Pðkþ1Þ  PðkÞ � Sðkþ1Þ ð2Þ

At each kth layer P(k), the current complex-valued spatiotempo-
ral image estimate is represented, while S(k) maintains a running 
average of update steps. The update step G(k) consists of the data  

consistency and regularization terms (see Methods and 
Supplementary Algorithm 1 for details), which are weighted accord-
ing to the sampling rate M ¼ 1=R

I
 (R is the acceleration factor) via 

tunable activation functions for undersampling data φðkÞud ðMÞ
I

 and 
undersamping regularization φðkÞur ðMÞ

I
, respectively. The data con-

sistency term modulates the k-space data residuals via an activation 
function and maps them back to the image space via a conjugate 
imaging operator. The regularization term at each layer contains 3D 
filters grouped into four banks, where each bank performs convolu-
tions in three dedicated dimensions, namely xyz, xyt, xzt and yzt, 
therefore avoiding costly 4D convolutions. To avoid overfitting, we 
assume shared filters and activation functions that operate on real 
and imaginary components of the image. Note that both data and 
regularization terms do not assume correlations between real and 
imaginary parts of the signal, as highlighted in Fig. 2b.

The image estimate P(K)(B, Θ) of the final layer can be then seen 
as a function of the k-space samples B and network parameters 
Θ. To tune the network parameters Θ we minimize the layer-wise 
exponentially weighted ℓ1 image reconstruction loss:

minΘEfB;PgT
XK

k¼1
e�τðK�kÞ k PðkÞðB; ΘÞ � Pk1 ð3Þ

over the retrospectively undersampled training dataset T
I
, where 

P* is the ground-truth image. Layer weighting is controlled by 
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Fig. 3 | Reconstruction results on retrospectively undersampled data. Image magnitudes and estimated 4D velocity magnitude maps on retrospectively 
14× undersampled data from a healthy volunteer. Corresponding slice locations are illustrated with red dashed lines that indicate cross-sections of the 
aorta and systolic peak. Bottom: scatter plot of velocity magnitude over the manually segmented aorta (contour shown in magenta throughout) together 
with correlation analysis (y = ax + b).
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parameter τ ≥ 0: when τ ≈ 0, the reconstruction error is penalized 
equally across layers, therefore gradients of network parameters 
have lower variance during stochastic optimization, yielding faster 
convergence. On the contrary, when τ → +∞, only reconstruction at 
the final layer, P(K), is minimized, which improves fitting accuracy on 
the training data. It is worth mentioning that τ controls the trade-off 
between training the reconstruction residual and network regular-
ity. Similar to Landweber iterations15,26 and deep supervision27, such 
implicit regularization penalizes irregular representations at inter-
mediate layers and favours networks that can provide fast recon-
struction. We propose to initialize τ with zero and then gradually 
increase it according to the training schedule (see Methods).

To demonstrate the validity of our approach, we note that the 
extracted velocity magnitude error in the aorta decreases simultane-
ously with the target reconstruction error during training, as shown in 
Fig. 2d, indicating that the target ℓ1 image error is a valid training sur-
rogate. It can be seen from Fig. 2e that the regularization term is sup-
pressed for lower acceleration factors R (higher sampling rate M

I
). A 

subset of learned FlowVN parameters Θ is shown in Fig. 2f, illustrat-
ing that learned convolutions perform direction-dependent filtering.

Retrospective and prospective evaluation
Reconstructed image magnitudes (for a single velocity-encoding 
component), estimated velocity magnitudes and their errors 

of healthy volunteer data for acceleration factor R = 14 are  
shown in Fig. 3 for retrospectively undersampled data. Compared 
to CS-LLR and HamVN, the proposed FlowVN provides  
better reconstruction accuracy in terms of image magnitude 
and velocities. Scatter plot and correlation analysis further sug-
gest that the velocity magnitude image that is estimated via 
FlowVN is in better agreement with the ground truth. As shown  
in Supplementary Table 1, these observations extend to other 
acceleration factors R (6–22), as tested on seven healthy  
volunteers.

Figure 4 indicates that FlowVN can accurately reconstruct the 
jet at the inlet section of the aorta for a patient with a pathological 
aortic valve.

The prospective undersampling acquisition results are reported 
in Fig. 5a,b: peak velocities and peak flow estimated using CS-LLR 
and FlowVN are in good agreement with PI reconstruction, while 
HamVN systematically underestimates the velocity magnitudes. 
Moreover, the correlation analysis shown in Fig. 5d reveals high 
correlation between CS-LLR and FlowVN velocity estimates. In 
contrast, HamVN shows systematic velocity underestimation com-
pared to CS-LLR.

The exemplary reconstruction time for typical four-point 
velocity encoded images reported in Table 1 shows that the  
proposed FlowVN is 30 times faster than CS-LLR reconstruction.
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Discussion
Practical learning-based image reconstruction can be traced back 
to dictionary learning methods28,29, where prior information is 
learned from image patches and then used as a sparsity-inducing 
regularizer for iterative reconstruction. Such an approach yields 
orders-of-magnitude longer reconstruction times compared to 
modern deep-learning methods. A straightforward application 
of deep artificial neural networks has been suggested for learn-
ing reconstruction as a regression from the k-space17 or zero-filled 
reconstructions30 directly into the image space. Although tempting, 
such an approach might be unjustified, because the k-space and 
zero-filling artefacts have a global dependence on image intensi-
ties. The advent of effective automatic differentiation systems31,32 
revitalized the idea of unrolling33 and relaxing numerical schemes 
that can solve the original reconstruction problem. Following this 
approach, a number of deep neural network architectures were pro-

posed15,18,34,35 that disentangle image acquisition and image prior 
models. Unrolling gradient descent reconstruction with tunable 
filters and activation functions yields the HamVN architecture pro-
posed by Hammernik15. One advantage of VNs is that, compared to 
other deep architectures, they have a relatively limited number of 
free parameters to tune, so they are less susceptible to overfitting.

In this work we have further developed the VN architecture15,36,37 
to accommodate high-performance undersampled 4D flow recon-
struction with limited training. Namely, we avoid exponential model 
complexity growth by avoiding 4D convolutions and by using sepa-
rable 3D convolutions that are shared for real and imaginary parts 
of the image. Furthermore, in contrast to the original HamVN15, 
we train our FlowVN for a wide range of undersampling factors by 
allowing the regularization term to depend on them. As illustrated 
in Fig. 2e, regularization scaled by φur decreases as more samples are 
available, while the data term φud stays constant for most layers. Such 
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conditioning allows network training on a larger variety of artefacts 
and is necessary in practice, because, for a given fixed acquisition 
time, the precise value of the undersampling factor is not known 
a priori and depends on breathing and cardiac motion patterns. We 
hypothesize that the wide range of acceleration factors that were 
used simultaneously to train the FlowVN provided a diverse collec-
tion of aliasing artefacts and enabled robust learning on a remark-
ably limited training set of 11 subjects. The exponential weighting 
of the layer-wise reconstruction loss (equation (3)) further regular-
ized FlowVN parameters by penalizing the nonlinear behaviour 
presented in HamVN reconstructions. Supplementary Fig. 1 and 
Supplementary Table 2 provide quantification of the reconstruc-
tion accuracy effects attributed to the modifications proposed with 
FlowVN. In particular, modifications to the network architecture 
result in a model that can better adapt to data and yield higher accu-
racy for retrospectively undersampled experiments, while the pro-
posed exponential weighting of the training loss improves accuracy 
of the prospective evaluation, which indicates better generalization 
ability. It is worth noting that FlowVN has only 1% more tunable 
parameters than HamVN (Table 1) while improving the reconstruc-
tion nRMSE by 23% (averaged over acceleration factors, as given in 
Supplementary Fig. 1). We note that 4D flow MRI greatly benefits 
from using coil information during reconstruction (Supplementary 
Table 2). Accordingly, comparison with single-coil reconstruction 
networks18 has limited benefit.

The proposed FlowVN is a learning-based approach for recon-
structing undersampled 4D flow MRI data in under a minute. For 
fixed reconstruction accuracy, FlowVN enables higher acceleration 
factors (12% improvement compared to the CS-LLR image nRMSE 
at R = 16) and does not introduce significant bias of peak flow esti-
mates. The proposed reconstruction is 30 times faster than state-of-
the-art CS-LLR and 4.2 times faster than HamVN due to the use of 
linear activation functions rather than radial basis functions, which 
require computation of pairwise distances between control knots 
and image intensities. It is worth noting that FlowVN demonstrates 
high generalization ability, being able to preserve patient patholo-
gies that were not present in the training data.

Methods
Compressed sensing 4D flow reconstruction. Phase constrast (PC) MRI encodes 
flow velocity vðr; tÞ 2 R3

I
 at spatial location r during cardiac phase t (1 ≤ t ≤ Nt) 

according to the following equation:

ρiðr; tÞ ¼ ρ0ðr; tÞ exp jπ
Φvðr; tÞð Þi

venc

� �
ð4Þ

where venc is the velocity corresponding to a phase of ±π, yi (i = 0,…,3) are the 
encoded velocity vector components. The four-point velocity encoding matrix is 
given as

Φ ¼

0 0 0

1 0 0

0 1 0

0 0 1

2
6664

3
7775 ð5Þ

Therefore, flow velocity v can be calculated from the phase difference of 
reconstructed PC images ρi.

Let ρit 2 CNv

I
 be a discretized image on an Nx × Ny × Nz = Nv grid corresponding 

to a cardiac phase t and velocity encoding i. Assuming Cartesian sampling on 
a regular N1 × N2 × N3 = Ns grid, the Fourier transform F 2 CNs ´Nv

I
, and Nc coil 

sensitivity maps Wk ¼def diagðckÞ 2 CNv ´Nv

I
 define the spatial encoding operator 

E 2 CNsNc ´Nv

I
:

Eρ ¼def FW1ρð ÞT ; ¼ ; FWNcρð ÞT
h iT

2 CNsNc ð6Þ

Considering a single velocity encoded image sequence, let P 2 CNv ´Nt

I
 and 

B 2 CNsNc ´Nt

I
 be stacked column vectors of signals ρ and zero-filled k-space 

samples, respectively, while M 2 f0; 1gNsNc ´Nt

I
 defines the undersampling mask. 

Iterative image reconstruction methods seek for a maximum a posteriori (MAP) 
solution defined by the following optimization problem:

bPMAP ¼ argmin P
1
2
k M EP� Bð Þk2F þRðPÞ ð7Þ

where the regularization term R
I

 enforces prior assumptions about image 
regularities. Here, we consider the LLR regularization14 to leverage image 
correlations among cardiac phases:

RLLRðPÞ ¼ λLLR
X

i≤Nptch

k TiPk ð8Þ

where Ti 2 f0; 1gp
3 ´Nv

I
 is the corresponding p × p × p patch extraction operator, 

yielding Npatch patches, and ∥ ⋅ ∥* is the nuclear norm. For LLR regularization, the 
optimization problem (7) is convex and can be efficiently solved using operator 
splitting techniques such as the fast iterative shrinkage-thresholding algorithm 
(FISTA)20.

FlowVN training. We employ a K = 10 layer VN and perform 5 × 104 iterations of 
the ADAM algorithm (learning rate 10−3, β1 = 0.85, β2 = 0.98, batch size of three) for 
training, during which we continually adjust τ = iopt × 10−3, where iopt is the iteration 
number. On every layer, each 3D filter bank contains Nf = 8 filters of size nc = 5 
voxels. Activation functions φ{⋅} are parametrized by Nknts = 91 control knots with 
spacing ω = 0.17:

φfhg ¼ ð1� h=ωþ bh=ωcÞϕbh=ωc þ ðh=ω� bh=ωcÞϕbh=ωcþ1 ð9Þ

with gradients provided by the following formulae:

∂φ
∂ϕi
fhg ¼ 1i≤h≤ iþ1ð1� hþ bhcÞ þ 1i�1≤h≤ iðh� bhcÞ

∂φ
∂h fhg ¼ ϕbhcþ1 � ϕbhc

ð10Þ

The acquired zero-filled k-space B with undersampling mask M was 
normalized by kMk1kBkF

I

.
To enable backpropagation to be carried out with limited GPU memory, we 

employ spatiotemporal equivariance of the convolution and exploit the fact that 
the k-space is fully sampled in the readout dimension kx for Cartesian acquisitions. 
Therefore, to draw a training sample, we perform random cropping of width wx 
and wt in dimensions x and t, respectively and simulate Fourier encoding in the 
kykz dimensions, as illustrated in Fig. 2a. The network was implemented using the 
Tensorflow framework32. Fully sampled and partial Fourier acquisition data from 
11 healthy volunteers were used during training.

In vivo data acquisition. As illustrated in Fig. 1, we used eleven subjects for 
network training and seven healthy subjects and one patient for evaluation. All 
in vivo work was performed on receiving written informed consent from the 
subjects and according to local ethics regulations.

The training datasets comprised 4D flow data measured in the aorta of eleven 
healthy subjects, nine of them fully sampled and two acquired with partial Fourier 
approach38 (factor 0.75 × 0.75).

For evaluation, data in the ascending aorta of seven healthy subjects 
were acquired on a 3T Philips Ingenia system (Philips Healthcare, Best, the 
Netherlands) using a Cartesian four-point referenced phase-contrast gradient-
echo sequence with an encoding velocity of venc = 150 cm s−1, spatial resolution 
of 2.5 × 2.5 × 2.5 mm3, TE = 3.3 ms, TR = 4.9 ms, 25 cardiac phases and flip angle 
of 8°. Examinations for each of the seven healthy subjects comprised a standard 
navigator-gated twofold accelerated parallel imaging5 examination for reference 
and a CS acquisition with an acceleration factor of R = 12.4–13.8, using a Cartesian 
pseudo-radial golden angle sampling pattern39 and data-driven respiratory motion 
detection, as in ref. 11. Only data in expiration were kept for reconstruction, as 
shown in Fig. 1.

To evaluate the reconstruction accuracy for pathological anatomy, 4D flow data 
were acquired in a single patient with dilation of the ascending aorta, combined 
aortic stenosis and regurgitation due to a bicuspid aortic valve on a 3T Philips 

Table 1 | Model complexities and typical reconstruction time for 
4D flow reconstruction

Method Reconstruction time No. of parameters

CS-LLR 10 min 24 s 2

HamVN 89 s 62,742

FlowVN 21 s 63,583

Typical reconstruction times are shown for four-point velocity encoded data compressed to five 
virtual coils and reconstructed on a 113 × 113 × 25 grid. CS-LLR was executed on a six-core Intel 
CPU; FlowVN and HamVN were implemented in Tensorflow and evaluated on a NVIDIA Titan  
RTX system.
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Ingenia system (Philips Healthcare), using a navigator-gated twofold-accelerated 
parallel imaging5 scan.

A receiver coil with 28 channels was used for acquisition; these channels were 
reduced to five channels using coil compression40. Coil sensitivity maps were 
estimated with ESPIRiT41. Concomitant field correction was applied to the signal 
phase according to ref. 42 and eddy currents were corrected with a third-order 
polynomial model fitted to stationary tissue43,44.

Evaluation. We compared the proposed FlowVN to the state-of-the-art 
compressed sensing LLR-regularized (8) reconstruction14 and the variational 
network from Hammernik and colleagues15, which we refer to as HamVN. The 
LLR implementation from the Berkeley Advanced Reconstruction Toolbox 
(BART)45 was used with a patch size of p = 8 and a maximum number of 
optimization iterations of 80. The optimal value of the regularization parameter, 
λLLR = 2.06, was chosen via a grid search to minimize the reconstructed flow 
field residual bv � vk k2

I
 averaged over the manually segmented aorta on the 

retrospectively 12× undersampled acquisition. Because the original VN15 was 
proposed for magnitude reconstruction of 2D and 3D data, we introduced the 
following modifications for the presented 4D flow evaluation: (1) 3D filters were 
grouped into four banks as in FlowVN (Supplementary algorithm (1)), (2) the ℓ1-
norm of reconstruction was optimized (that is, equation (3) with τ → +∞). We refer 
to this architecture as ‘HamVN’; the number of network layers, filters and control 
knots were the same as in FlowVN.

Retrospective study. For simulated retrospective undersampling experiments, we 
used 2 × PI data and simulated a pseudo-radial golden angle sampling pattern39 
with acceleration factors of 6–22.

For each undersampling factor we evaluated the nRMSE of the image 
magnitude, the relative error (RelErr) of velocity magnitudes inside the aorta and 
the angular error (AngErr) of the estimated velocity vectors:

nRMSE ða; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i
ðai�a?i Þ

2

Nmaxjða?j Þ
2

r

RelErr ða; aÞ ¼ ka�a
k2

kak2

AngErr ðu; vÞ ¼ arccos <u;v>
kuk2kvk2

 
ð11Þ

Additionally, we report the structural similarity index (SSIM)46 with σSSIM = 1.5 on 
the reconstructed magnitude images.

Prospective study. Using manual aorta segmentations we computed flow over 
cross-sections of the aorta by integrating velocity components projected onto the 
cross-section normal. The peak flow was then defined as the maximal flow over 
cardiac phases for a given cross-section. Moreover, we calculated the peak through-
plane velocity, defined as the maximum velocity projection across cross-sections of 
the aorta over cardiac phases.

To quantify agreement with the reference 2× PI reconstruction, we performed 
Bland–Altman analysis47 of peak flow and peak through-plane velocities.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The code for the network training and inference used in this study as well as 
network weights are available online from CodeOcean together with volunteer 
data: https://codeocean.com/capsule/0115983/tree48. The code for analysis is 
available on CodeOcean from https://codeocean.com/capsule/2587940/tree49.
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Sample size 18 healthy subjects and 1 patient who volunteered to participate in MRI exams upon written informed consent according to institutional and 
ethics guidelines

Data exclusions No data were excluded during analysis

Replication We split the retrospectively undersampled data into training and test sets that contained data from volunteers not presented in training and 
one patient with irregular flow in the aorta. We also included a prospective study, where undersampled signal was acquired on the scanner in 
volunteers that were not used during training.

Randomization Healthy subjects were scanned using two-fold undersampled 4D Flow MRI protocol with parallel imaging (PI) to provide training data. Subjects 
that underwent both 2xPI and ~14x accelerated pseudo Golden angle acquisitions were used for both retrospective and prospective studies.

Blinding Since quantitative accuracy of the reconstructed flow measurements are reported and hence blinding was not required.
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Population characteristics For training and analysis we used data from 18 healthy volunteers (age 30+-11) and 1 patient with dilation of the ascending aorta 
and combined aortic stenosis and regurgitation due to a bicuspid aortic valve.

Recruitment Volunteers were recruited locally; the patient was recruited as part of routine examination at the University Hospital Zurich. 
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